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What is the goal?
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We’d like general-purpose agents that could do the same.
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Disadvantages to Fine-tuning
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• more likely to exploit spurious correlations


Few-shot transfer is more similar to how humans learn a new task
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What is an alternative?
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Radford, et al. Language Models are Unsupervised Multitask Learners. 2019



Can we further improve on this level of

generation and generalization?
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Can we further improve on this level of

generation and generalization?
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GPT-3   175 Billion parameters



Critical Aspects of GPT-3

• Model Size


• Training Objective
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Model Size

13
Kaplan, et al. Scaling Laws for Neural Language Models. 2020



Model Size
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Transformers scale well!

Kaplan, et al. Scaling Laws for Neural Language Models. 2020



Motivating the Training Objective
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Predict the next word in a sequence.

Alec Radford @ Berkeley 4/15/20
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“But it must be recognized that the notion of ‘probability of a sentence’ 
is an entirely useless one, under any known interpretation of this term.” 

- Noam Chomsky, 1969



Motivating the Training Objective
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P(“The cat sat on the mat.”) > P(“The cat sats on the mat.”) 
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P(“The cat sat on the mat.”) > P(“The whale sat on the mat.”) 

P(“4” | “2 + 2 =”) > P(“5” | “2 + 2 =”) 

P(“1 star” | “That movie 
was terrible. I’d give it”)

P(“5 starts” | “That movie 
was terrible. I’d give it”) >

Grammar

World Knowledge

Arithmetic

Sentiment Analysis
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Approach
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Model

http://jalammar.github.io/illustrated-gpt2/ 27



Model

Model

The trophy didn’t fit in the suitcase because 

the trophy was too big.
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Devlin, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018 
Raffel, et al. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. 2019 
Shoeybi, et al. Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. 2019 
Microsoft. Turing-NLG: A 17-Billion Parameter Language Model by Microsoft. 2020
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Compute
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Dataset

• Common Crawl (filtered) - general web crawl, filtered based on 
similarity to high-quality reference and de-duplication


• WebText2 - expanded version of GPT-2 training data, scrape of 
outbound links from Reddit posts with reasonably high ratings


• Books1 & Books2 - internet-based books


• Wikipedia - English-language Wikipedia

35https://commoncrawl.org/the-data
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Evaluations
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Let’s try it!
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tdaeef = ?
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Let’s try it!
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Please unscramble the 
letters into a word and 
write that word.

tdaeef = ?Zero-Shot



Let’s try it!
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Please unscramble the 
letters into a word and 
write that word.

pcirlaroc = reciprocal

tdaeef = ?One-Shot



Let’s try it!
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Please unscramble the 
letters into a word and 
write that word.

pcirlaroc = reciprocal

elapac = palace

tdaeef = ?

Few-Shot
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VS.
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Metalearning
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Sample Output

Model

The trophy didn’t fit in the suitcase because 

the trophy was too big.
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LM-Likelihood

Model

The trophy didn’t fit in the suitcase because the trophy was too big.

54

2.78   3.45  10.00   0.50  25.12



Methods of Evaluation
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Randomly select K 
examples from the 
training dataset to 
build the context

Feed each  
context + possible completion  
through the model separately

Sample from the 
model up to a 

newline

Normalize LM 
likelihood over the 

completion and select 
the completion with 

the highest likelihood

BLEU

F1

Exact-match accuracy

Multip
le-choice

Free-form
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Complete List of Tasks

60

Reading Comprehension 
• QuAC

• SQuADv2

• DROP

• CoQA

• RACE

Language Modeling 
• PTB

Close and Completion 
• ROC Stories

• HellaSwag

• LAMBADA

Trivia-style Questions 
• NaturalQs

• WebQs

• TriviaQA

Translation 
• En <-> Fr

• En <-> De

• En <-> Ro

Winograd-style 
• Winograd

• Winogrande

Commonsense Reasoning 
• PiQA

• ARC

• OpenBookQA

Comprehensive Benchmarks 
• SuperGLUE

Inference 
• ANLI

• RTE

Synthetic and Qualitative 
• Arithmetic

• Word scrambling

• Character-level manipulation

• SAT analogies

• Article generation

• Learning and using novel words

• Correcting English grammar



Summary of Performance
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Task Class Few-Shot Performance

Close, Completion, and Language Modeling Very Good

Question Answering / Knowledge Base Very Good

Translation Good

Winograd / Winogrande Good

Commonsense Reasoning Mixed

Reading Comprehension Mixed

SuperGLUE Mixed

NLI Poor

Bias Probes Poor

Dario Amodei @ NeurIPS 12/7/20



Strengths

62Joshi, et al. TriviaQA: A large scale distantly supervised challenge dataset for reading comprehension. 2017



Strengths

63Paperno, et al. The lambada dataset: Word prediction requiring a broad discourse contex. 2016
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Strengths
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Strengths
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Task Accuracy Without 
Commas

Accuracy With 
Commas

4 Digit Addition 25.5% 91.1%

4 Digit Subtraction 26.9% 89.7%

5 Digit Addition 9.3% 90.2%

5 Digit Subtraction 9.9% 82.2%

6 Digit Addition 3% 78.5%

6 Digit Subtraction 3% 73.9%

Dario Amodei @ NeurIPS 12/7/20, and Gwern Branwen! 

3456  ->  3,456



Limitations

67Nie, et al. Adversarial nli: A new benchmark for natural language understanding. 2019



Limitations
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Choi, et al. Quac : Question answering in context. 2018;

Dua, et al. Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. 2019



Key Insights
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Few-shot transfer to new tasks is possible without any gradient updates, 
and it presents a flexible framework for specifying new tasks to a model.
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Bigger models can learn more from context
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Bigger models have more emergent abilities
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More context helps up to a point

73Wang, et al. Superglue: A stickier benchmark for general-purpose language understanding systems. 2019



Performance continues to scale with compute

74



Lingering Questions
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Lingering Questions

• Methods of Evaluation


• Training Datasets and Memorization


• Real-World Applications
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• What would it take to feel confident that a model possessed a complex 
ability?


• Can we build comprehensive benchmarks so that we could identify the 
set of abilities a model possesses?


• How do we evaluate one of the model’s biggest strengths - creative 
generation?
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Training Datasets and Memorization
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• Quality of Data


• Duplication of Benchmarks



Training Datasets and Memorization - Data Quality
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CommonCrawl filtering


1. Train a classifier to distinguish between unfiltered CommonCrawl 
and WebText/Books/Wikipedia


2. Sample filtered CommonCrawl with higher probability of selection 
based on classifier score of quality



Training Datasets and Memorization - Data Quality
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and WebText/Books/Wikipedia
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Training Datasets and Memorization - Data Quality

85

How can we better define and identify high quality data?



• Gender


• Race


• Religion

“The detective was a _______” —> 83% male

“The competent detective was a _______”

“The incompetent detective was a _______”

86

Training Datasets and Memorization - Harmful Data



• Gender


• Race


• Religion

87

Training Datasets and Memorization - Harmful Data

Male-biased 
Descriptive Words 
•Large

•Mostly

•Lazy

•Fantastic

•Eccentric

•Protect

•Jolly

•Stable

•Personable

•Survive

Female-biased 
Descriptive Words 
•Optimistic

•Bubbly

•Naughty

•Easy-going

•Petite

•Tight

•Pregnant

•Gorgeous

•Sucked

•Beautiful



• Gender


• Race


• Religion
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Training Datasets and Memorization - Harmful Data



• Gender


• Race


• Religion
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Training Datasets and Memorization - Harmful Data



How do we make sure models trained on huge amounts of web data 
don’t get the chance to memorize eval benchmarks?

90

Training Datasets and Memorization - Eval Memorization



Removing benchmarks from training data


1. Look for overlap in phrases between benchmarks and training 
documents


2. Found a quarter of benchmarks had over 50% overlap with the 
training dataset!


3. Remove training documents that overlap with eval benchmarks


4. Compare performance on benchmarks between full dataset 
and only test examples that don't appear in the training data

91
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Training Datasets and Memorization - Eval Memorization



Real-World Applications

Important considerations


1. Potential for harmful outputs


2. Reliability of performance

97



Real-World Applications
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• Semantic search


• Turn a script into a novel


• Turn a sentence into an email


• Smart formatting and code generation


• Emoji storytelling

https://andrewmayneblog.wordpress.com



Real-World Applications - Emoji Storytelling

99https://andrewmayneblog.wordpress.com



Real-World Applications - Emoji Storytelling

100https://andrewmayneblog.wordpress.com



Real-World Applications
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• What are the useful applications of a model like GPT-3?


• Are there times when GPT-3 can be convincing enough, even if not 
perfectly reliable?
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Real-World Applications - Writing News



Real-World Applications - Writing News
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• Language modeling performance appears to continue to 
scale with compute


• Large models can transfer few-shot to new tasks without 
any fine-tuning


• There are many complexities to evaluations, training 
datasets, and applications for large models
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Questions?

109



Limitations
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Strengths
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Strengths
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Energy Usage

• GPT-3 - thousands of petaflop/s-day vs. GPT-2 - tens of petaflop/s-day


• Pretraining cost vs. lifetime of model


• Distillation?



Strengths
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Strengths
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Real-World Applications - AI Channels

116https://andrewmayneblog.wordpress.com



Strengths

117Turney, et al. Combining independent modules to solve multiple-choice synonym and analogy problems. 2003


